Leaf Cutter Empire – Educational Game

With the Smithsonian Tropical Research Institute’s Q Digital platform, we were commissioned to make an educational game about the life cycle of leaf-cutter ants. Explore how the colony works by chopping leaves to feed the fungus, defending the ants from parasites, and finding new mates to spread your leaf-cutter empire!

Produced by Digital Naturalism Laboratories for The Smithsonian Tropical Research Institute and the Q Bus.

Development by Brian Boucher, Bilal Cheema, Steven Solof, and Andrew Quitmeyer

Art design by Kitty Quitmeyer

Scientific advising by Dr. Hannah Marti

Music and Sound Effects by Dan Singer https://ridgedchippies.bandcamp.com/releases

Flatten the Curve – CoViD-19 Simulation Game

We created a CoViD-19 simulation game for Q?-Bus at STRI. The goal is to let people get a better understanding of how diseases spread, and the effectiveness and consequences of different approaches.

Created by Brian Boucher and Andy Quitmeyer for STRI Q-Bus

Mobile Modular Field Stations

The future of the biological field station is not large fancy lab dropped in the middle of a jungle, but rather a network of mobile laboratories distributed throughout an ecosystem.

Lab assistant, Alister, helps test out an early iteration of the mobile lab deep in the jungle

we are combining Digital Naturalism Laboratories’ previous research in Mobile Makerspaces like the Philippines “BOAT Lab” (https://www.youtube.com/watch?v=n0L-SNO4A5w) with the decades of experience that the sustainable architecture firm, Cresolus (https://www.cresolus.com/), has experience building in building tropical architecture like homes and field stations in national parks. We are creating modular, mobile laboratories that scientists can bring directly to their field sites around the world.

Video overview of the BOAT Lab – floating biological makerspace

What is the challenge?

Field biologists and conservationists are faced with a paradox: The goal of their work is to protect and understand natural ecosystems, but the mere act of accessing their field sites generally requires some amount of environmental destruction. Almost all travel for field biology relies on the burning of fossil fuels, which are destructive not only in the original drilling, but also in the pollution they give off into the very environments being studied. Moving vehicles back and forth between field sites also introduces physical destruction and noise pollution to natural areas which may negatively impact the work being done to begin with.

Additionally, most conservationists and field biologists are constrained for time and space by the samples they collect. Researchers need to get to the sites, collect their samples, and get them back to labs for processing within a limited time-window. This means that these trips to field sites are often a constant, daily commute which takes a toll on the environment (as well as the researcher’s and their projects!).

Like a surgeon cutting through healthy flesh to find a disease, these researchers will never be able to completely stop causing some damage to get to the places they study, but we can work to greatly reduce the damage caused.

Instead of having thousands of researchers around the world commuting between field sites just to bring samples back to the laboratory, we think that the whole laboratory should be brought to the field.

One Solution

These laboratory “Pods” can be towed or floated to field sites deep in forests or up rivers while withstanding inclement weather or hazardous terrain.  Advances in sustainable energy harvesting coupled with the miniaturization of technology means that researchers can process their data and samples on-site (even genetic sampling labs can be miniaturized!). Thus field biologists and conservationists can make fewer unnecessary trips back and forth between the field and lab and increase their productivity while minimizing their own footprint in these areas.

We have already tested functional prototypes of these modular labs with many researchers and conservationists around the world including those from the Smithsonian, National Geographic, and many major universities.

Helping field biologists and conservationists destroy less of the environments they are trying to save and understand.

Key Targets

1. The reduction energy of moving scientists back and forward to labs (your point).

2. The modular lab trailer that can be used multiple times in different configurations therefore reducing the cost of dedicated lab space in a building.

3. The trailer is made from reused car parts (the differential, axel and wheels come from a jeep, the chassis from a Toyota pickup).

4. Because it is a trailer it requires very little energy to move (vehicles would be traveling to site anyway).

5. It allows studies/research to continue for greater length of time (often scientists have to travel to a country multiple times to create their data sets this could help reduce that).

6. Allows scientists to work in tropical conditions more efficiently (ie it could be bug proof and weather proof so they don’t have to leave the site so often)

7. Allows scientists to sleep in the field (Can be adapted to provide accommodation so they don’t have to travel back to sleep somewhere)

Collaboration Inspiration

Both Digital Naturalism Laboratories (Dinalab) and Cresolus are concerned with getting researchers access to incredible ecosystems in sustainable ways. We met while repairing bridges on “Pipeline Road” nature park in Gamboa Panama.  Pipeline is one of the most heavily researched areas in the past century, but unfortunately, due to bureaucratic disagreements with the local field station and government entities, many parts of this historic field site have fallen into ruin preventing most visiting scientists and conservationists from conducting their work here. We set up our own volunteer initiative to restore access to these field sites using sustainably sourced and upcycled materials (here’s a time-lapse of one bridge we completely rebuilt

While spending days toiling in the hot jungle, on a volunteer initiative to rebuild bridge and trail infrastructure for a historic research and conversation site (Pipeline Road in Panama), Dinalab and Cresolus got to learn about each other’s work in mobile labs and sustainability design. We also got to hear the laments of the field biologists discussing the paradox of how they do field research because they love nature, but that in order to do it, they currently cause lots of pollution in the form of constantly driving back and forth to bring samples from the field to the lab.

This led us to the inspiration that, maybe instead of constantly bringing field samples to the lab, maybe we should bring the lab to the field!

No, we are taking Cresolus’s mobile architecture studios they bring to jungles when building parks and outfitting them with scientific tools. These initial tests proved not only functional, but can help increase productivity! Now we just need to design and test more!

Design Challenges

In our early research (https://dl.acm.org/doi/abs/10.1145/3196709.3196748),  we established a hierarchy of needs for labs that starts with

1)            Protection

2)            Organization

3)            Work Surfaces

4)            Light

5)            Information Access

6)            Power

Most people we discuss this challenge with automatically assume that getting power to a mini-modular field station deep in a remote field site would be the biggest challenge, but actually with solar power, pre-charged battery banks, inverters, and sustainable designs (e.g. passive cooling), getting power to the research equipment will not be our main challenge.

Instead the key aspects of the design are creating a modular system that can facilitate the research of many different types of scientists and conservationists while keeping the sensitive tools protected, organized, and easy to work with.

We already have many tested and experimental designs with workstations and lab equipment, for example, that expand from a trailer or pack into modular pelican cases.


Scientists and Conservationists doing remote fieldwork. Tens of thousands of researchers visit established field stations per year, like the Smithsonian Tropical Research Institution in Panama, but generally still need to travel long distances from the field stations to their field sites. Most of these researchers are forced to spend long days commuting back and forth from the labs at the field station to their sites in the field, and because of the time-sensitive nature of the data they are collecting and samples to be processed, cannot simply stay out for longer durations. Due to the generally treacherous nature of back-country travel, each additional trip also increases the chance of physical or mechanical danger to the researchers and their vehicles.

Instead, visiting researchers will be able to rent our labs and bring them directly to their field sites. There, they can stay, conducting their work, with a modular selection of the laboratory tools they need, and make one final trip after their research has been finished.

Scientists will be able to rent our mobile laboratories and bring them directly to their field sites to conduct and process their work in nature. The pods are designed and tested for rough-terrain to get to off-road sites, and can be loaded onto pontoons to function as floating laboratories in aquatic environments. We also offer services to deliver the pods into the research sites for the scientists, and pods are made to perfectly fit in shipping containers to they can be used anywhere around the world.


The environment bears most of the cost currently that we hope to address.  At a time when fuel costs are absurdly cheap and biology and conservation budgets are small, many researchers feel forced to carry out their work the traditional ways, meaning lots of travel back and forth to field sites. The damage caused is not only from the drilling to extract the fossil fuels, or the pollution strewn across the target environment, but the constant back-and-forth travel disrupts the ecosystem and introduces noise-pollution which may impact the studies the researchers hope to conduct in the first place.

Additionally, many existing laboratories and field stations are still heavily dependent on fossil-fuels. Our pods, on the other hand, will be equipped with renewable power sources or pre-charged from our solar arrays.

Similar Projects

Mobile labs are not a completely new concept. Many research ships function like this already (famously like Jacques Cousteau’s floating labs), and other designers/researchers have launched similar projects such as Marko Peljan’s “Makrolab,” a modular lab that could fit into shipping containers and shipped around the world.

Other projects we know of include Steven Roberts’s “Nomadic Research Labs”, Marko Peljan’s Makrolab prototype for a mobile art and science workstation, The Hackteria Network’s outdoor DIY art-science workshops, American Arts Incubator’s “Waterspace” Project building a floating art-science makerspace, Jacobs and Zoran’s work with mobile digital craft labs and hunter-gatherer tribes in the Kalahari, and the Signal Fire Arts and Activism Residency that doubles as a backpacking trip.

Unfortunately, many scientists, especially small research groups, or grad students lack the funding needed to invest in such larger infrastructure. Our pods are customized with equipment for the individual researcher or small group and delivered to the field at minimal costs. Cresolus, as an established sustainable architecture firm working in national parks around the world, already has offices  and the ability to make and deliver these pods to the field sites already used by many researchers in Central America and Africa.

Moreover, all our designs will be open-source, so researchers can further add on to the designs we have and contribute to better mobile labs for everyone.

What are your Team’s primary work tasks and activities over the next 3-6 months? (optional)

We already have functioning prototypes tested with scientists in key research areas (Pipeline Road). Our goals for the very next stage of the project are to do another round of more formalized testing and evaluation and to develop further features to add to the pods’ designs.

We aim to enroll existing scientist clients such as such as Dr. Rachel Page’s Bat Lab with the Smithsonian Tropical Research Institute, and Corey Tarwater’s Avian Ecology lab from the University of Wyoming who both do extensive field work on Pipeline road. We will provide their researchers with reduced rate use of the pods.

Modular features that we intend to design into the projects that we will be working on over the next several months include:

-Mesh networking

-Safety equipment/signaling

-Sterile lab

-Expandable Flight Cages

-Dry ice storage / Peltier Coolers

-Expandable work stations

-Built in 360-camera traps / Acoustic monitoring

What are your project needs over the next 3-6 months in terms of resources, skills and knowledge? (optional)

To complete our next steps, we primarily need a little bit of funding to carve out some design time between our two organizations to dedicate to further develop the prototypes we already have.

We already have most of the materials, electronics, field sites, and evaluators available, we just need time to put these together and continue testing and sharing these designs.

What are your project goals?

For the very next stage of our project our main goal is to get one of these pods functional and consistently rented out to different researchers visiting our field sites over the next year.

Our longer-term goal is that within two years, we will have three of these pods available at the different field sites Cresolus works in, such as Gabon, or Belize.

Finally, we hope that within 5 years, we will have had and documented enough uses of these mobile laboratories that the idea of renting them out has become commonplace within research communities. We will have many pods available for conservationists and biologists around the world, and other organizations will replicate many of the ideas we have shared and tested.

Fast Jungle Face Shield

Our little jungle lab is trying to help manufacture face shields for medical workers, and we tested many designs out on the internet. The fastest design we have used so far is our own modification



based off the Georgia Tech Medical Innovation design


The headband just needs
-acrylic-laser cutter
-Rubber band

-(optional) Eva Foam or Self-Adhesive weather stripping (for forehead comfort)

For the face shield, ideally you have thin sheets of PET that you can laser cut as well, but if you don’t you can use A4 transparency sheets (like we will be) or a sliced up 3 Liter soda bottle (like we also use).
The key advantages of this design are

SPEED- Each takes only about 5 minutes to cut, and maybe 8 minutes total to make (compared to 1.5 hours for a 3D print), plus you can nest them to use less material!

and the

-The headbands can be cut out of Acrylic, PET, or most other plastic sheets you might have (could possibly use wood and MDF, but might be harder to sanitize)

-Can attach different types of simple or disposable face shields like A4 transparency sheets or 3 Liter soda bottles

There are plenty of other designs out there that may be nicer or fancier or might make sense if you have a fleet of 3D printers instead of a laser cutter. Figure out what works best with the materials you have. Here in Panama most of the stores except grocery stores are shut down, so most of these materials you can find at the Super 99 grocery store (e.g. EVA foam and Plastic sheets or soda bottles)

For the face shield, ideally you have thin sheets of PET that you can laser cut as well, but if you don’t you can use A4 transparency sheets (like we will be) or a sliced up 3Liter soda bottle (like we also use)

Túngara model – now with sound!

Sound on!!

A while ago, I crocheted a túngara, a frog I hear a lot during the wet season in Panamá. I wanted to have my model make the distinctive túngara call, which sounds like a video game sound effect, but I didn’t know how. For Christmas, Andrew gave me a bunch of cool electronics that I can record on and embed in soft toys. He even loaded one with a recording of a túngara for me!

We opened the frog up and inserted the device.

Here’s a picture of a real túngara with its characteristic inflated dewlap.

I’m looking forward to making more noisy toys like this! Someone suggested a toucan, which should be fun.

Note: This post is by Kitty and is cross-posted over all my personal blog, wellreadpanda.com 🙂

Bat Night Signal

Rachel Page’s Bat Lab at the Smithsonian Tropical Research Institute has been hosting a monthly outreach “Bat Night” in gamboa Panama, for quite some time. DINALAB figured it was about time they had their own bat signal!

Gamboa Games

We are making a suite of open-source DIY board games. The goal is to find things that

  • are fun to play
  • can be sold to support the lab
  • make use of the scrap material from science project prototyping
Some of the character figures cut from scrap materials

Panatrap: 360 Camera Comparisons (2019)

For our open-source 360 camera trap project, we wanted to evaluate the field and figure out what the most available and useful cameras to hack would be. We collected about 6 commercially available camera traps and evaluated them on their

  • Hackability
  • Image Quality

In our qualitative order, here is a ranking of those cameras we have tested and the order we want to hack them:

Camera type Object Pixel Density (front) Object Pixel Density (side) Distortion Sensitivity to infrared Price paid
MadV 127*127 133*133 None Lowest 300
Ricoh Theta V 100*100 100*100 None Highest 430
Samsung Gear 95*95 143*133 Some Low $83
Ricoh Theta S 100*100 100*100 None High 270
Zision 166*166 90*110 Most Low $60
Maginon View 50*50 45*50 Some Low $55

Basic Testing Procedure

Object Pixel Density

We took all of the cameras in a room with controlled lighting, and placed a colorful, standard-sized basketball exactly 2 meters away from each camera.

Set-up to test the cameras’ pixel resolution and level of distortion (after stitching the images).
Setup of the Theta V with the Ball 90 degrees to the side (the Theta V had the least amount of distortion after stitching)

Two pictures were taken in two camera positions, one with a lens straight in front of the subject, one with the camera sideways (or upwards for the Zision). The object is positioned at 2 meter.

IR Sensitivity

To test the cameras’ sensitivity to infrared light. We placed the same calibration object (the colorful basketball) at a distance of 2 meters, with the camera positioned between the subject and the light.

Xiaomi MADV (Mijia Sphere)

General Camera Details

$349 ($299 on sale)

Object Pixel Density + IR Sensitivity

The MadV has a resolution of 127*127 px when ball is in front of the camera and 133*133 px from side view. Its sensibility to infrared light is quite poor. With the target at a distance of 2 meter, it was not able to show anything.

Picture with infrared light



Ricoh Theta V

Video Stitching Resolution4K
Internal/External StitchingInternal Stitching
360 Stitched Video FormatInternal:3840 x 1920 at 29.97 fps (56 Mb/s MP4 via H.264) 1920 x 960 at 29.97 fps (16 Mb/s MP4 via H.264) 
Still Image ResolutionJPEG: 14 Megapixel, 5376 x 2688 (2:1)
Number of Lenses2

Camera per Lens

Sensor1-Chip 1/2.3″ CMOS

Optics per Lens

Maximum Aperturef/2
Lens Elements7
Minimum Focusing Distance4.0″ / 10.2 cm


Recording Mediax Internal Flash Memory
Built-In MicYes
Channels4.0-Channel Surround
Audio FormatAAC-LC

Exposure Control

Shutter Speed1/25000 – 1/8 Second (Photo)1/25000 – 60 Seconds (Photo)1/25000 – 1/30 Second (Video)1/25000 – 1/30 Second (Streaming)
Photo ISO Range100 – 1600 (Auto)64 – 3200 (Manual)
Video ISO Range64 – 6400 (Auto)

The Ricoh Theta V showed a resolution of 100*100 px, no matter which position the camera was in.

Picture with infrared light.



Its sensibility to infrared light is the highest of all the cameras tested.

$429 ($379 on sale)

Samsung Gear 360 4K Spherical VR Camera

Image Sensor2 x 8.4 MP CMOS
Lenses2 x f/2.2 ultra-wide lenses
Max Video Resolution360° Dual Lens: 4096 x 2048 at 24 fpsSingle Lens: 1920 x 1080 at 60 fps
Video FormatMP4 (H.265)
Photo Capture Resolution360° Dual Lens: Up to 15 MP (5472 x 2736)Single Lens: Up to 3 MP (2304 x 1296)
Photo FormatJPEG
ISOUp to 1600
MicBuilt-in stereo microphone
Recording TimeUp to 130 minutes in 2560 x 1280 resolution at 30 fps
Battery1160 mAh
Card Slot1 x microSDXC card slot (supports up to 256 GB cards)
Supported Operating SystemsAndroid, iOS, Mac, Windows (360 Video Editor is not available for macOS computers)
Wi-Fi802.11 a/b/g/n/ac (2.4/5 GHz)
Interface1 x USB 2.0 Type-C
SensorsGyro, accelerometer

Picture with infrared light



The Samsung Gear has a resolution of 95*95 px when positioned straight front of the ball, and 143*133 sideways. This camera shows a high level of distortion at the latter position, and has a slightly lower resolution compared to both Thetas.

It proved somewhat sensible to infrared light, though noticeably less than that of both Thetas.

$82.99 (though as of September 2019 price went up to $200)

Ricoh Theta S

Picture with infrared light



The Ricoh Theta S has, just as the Theta V, a resolution of 100*100 px for both sides. Its sensibility to infrared light was a bit less than that of the Theta V, but higher than that of the Samsung Gear.


Zision 360°Panoramic VR Full View Action Camera

Picture with infrared light



The Zision has a resolution of 166*166 px when positioned with its only lens facing the subject directly, but the picture shows highly distorted when positioned with the lens upwards.

Its sensibility to infrared light was poor, only a bit higher than that of the MadV.


Maginon View 360

50 euros (discount price)


Type of camera     Full-spectrum camera for 360° spherical panoramas

Image sensor     2x 2MP CMOS sensor

Photo resolution     8 MP (4,000 x 2,000 | interpolated), 5 MB (3,200 x 1,600 | interpolated), 3 MP (2,592 x 1,296)

Video resolution     2.048 x 1.024 (30fps)

Lens     2x 210° super wide-angle lens

Aperture     F = 2.0 | Focal length f: 0.88 mm

Recording time     Up to 120 minutes with fully charged battery (without WiFi, 2048 x 1024 / 30fps)

Memory     MicroSD card up to 32 GB (min. class 10 or faster)

Connections     Micro USB connection

Power supply     1,300 mAh lithium-ion battery

Dimensions     137 x 45 x 14 mmWeight     83 g

Picture with infrared light



The Maginon has a resolution of 50*50,  and showed a bit of distortion when the camera is positioned sideways. Its sensibility to infrared light was similar to that of the Zision.

$110,00 ($55.00 in sale)